Magnetic Field

Safety and Equipment
- Paper and pen/pencil
- Computer with PASCO 850 Universal Interface and PASCO Capstone
- PASCO 2-Axis Magnetic Field Sensor
- Two Banana-to-Alligator Wires (for Signal Generator)
- Solenoid Coil
- Set of small compasses
- Horseshoe magnet, bar magnet

Introduction

The gravitational field a point mass or electric field of a point charge is radial, meaning it points outward or inward from the point source. The magnetic field of a magnet consists of complete loops that surround and go through the magnet. Magnetic fields always form looped patterns. Each loop goes through the object causing the magnetic field. Any point on the object where the field emerges (points outward) is called a “North” pole, while a spot where it points toward the object is a “South” pole.

A compass needle is a magnet that is free to rotate. It tends to rotate so that its poles are aligned with the direction of an external magnetic field. Because of this, magnetic compasses are helpful in finding the direction of the magnetic field.

The strength of a magnetic field decreases with the distance from the magnet. The strength of the magnetic field could vary inversely as the square of distance, as with the strength of a gravitational field or an electrical field. However, it is not always the case and the strength of the magnetic field could vary in a different way relative to distance.

We expect that the magnetic field inside a solenoid coil will be found by the equation:

\[
B = \frac{\mu_0 NI}{\ell}
\]

where \(\mu_0 = 4\pi \times 10^{-7} \text{T} \cdot \text{m/A}\) and is a magnetic permittivity of a vacuum, \(N\) is the number of loops of wire, and \(\ell\) is the length of the coil. Outside the solenoid, the field should be weaker than inside.
Objective:
- Investigate the direction and the magnitude of the magnetic field around two permanent magnets and a solenoid.

Part #1: Permanent “Horseshoe” magnet.

1. Place a “horseshoe” permanent magnet flat in the middle of a blank sheet of paper.
2. Use a pencil to trace the shape of the magnet on the paper.
3. Place small compasses evenly around the magnet in such way that the arrows (not compasses) form one continuous line (head-to-toe). See Figure 1.

![Figure 1. Horseshoe magnet with compasses measuring the magnetic field direction.](image)

4. Trace out the magnetic field line formed by the compasses. To do this, remove the compasses one by one, while drawing the exact direction of the arrow on the paper.
5. Repeat 3–4 for two more different lines starting at different point of the magnet. See Figure 1
6. Determine and label the poles of the magnet on each sketch. (Note: Sometimes the compasses get “reversed” due to re-magnetization. Use an agreement among several compasses to determine the direction of a magnetic field line.)
7. Take a picture of the final drawing for the report.
8. Hold the magnet vertically with its poles down on another blank sheet of paper and repeat steps 2–7 for two different lines connecting the poles.

Part #2: Permanent “Bar” magnet

1. Repeat steps 2-7 from Part #1 for the permanent “bar” magnet laid flat on a blank sheet of paper.
2. Repeat steps 2-7 from Part #1 for the permanent “bar” magnet standing vertically by either pole on a blank sheet of paper. Be aware that all lines in this case will be open (either beginning or end).
3. Take a picture of the final drawing for the report.
Part #3: Solenoid Coil

1. Place the solenoid on a blank sheet of white paper and mark the ends and the sides of the solenoid.
2. Connect banana plugs to corresponding Red/Black terminals of the 850 Universal Interface; and then connect banana plugs or alligator clips (depending on what your coil needs) to the terminals of the solenoid. See Figure 2.
4. Press Record to turn on the power supply.
5. Repeat steps 2–7 from Part #1 for the solenoid. (Including standing the solenoid on its end.)
6. Investigate how the orientation of the compasses’ arrows changes if the current through the solenoid is reversed (switch the terminals). State your findings in the abstract.
7. Compare the shapes of the magnetic fields of the horseshoe magnet, bar magnet, and solenoid coil. Which permanent magnet does the solenoid most resemble? State your findings in the abstract.

Part #4: Strength of the magnetic field.

![Figure 2. Measuring the magnitude of the magnetic field inside of the solenoid](diagram)

2. Switch to the Magnetic Field Components page in Capstone.
3. Press Record and Tare the sensor while holding it as far as possible from any magnet. Press Stop.
4. Insert Magnetic Field Sensor all the way into the coil as shown in Figure 2.
5. Press Record to measure the current through the coil and the magnitude of the magnetic field in the center of the solenoid.
6. Move the sensor out 1 cm from where the previous measurement was. Record the magnetic field.
7. Repeat Step 6 until the field gets to zero (about 11 cm).
8. Graph your measurements of B vs. x (x is the distance from the initial point). Briefly describe it.
9. [Phys-2426 only] Record the length of the solenoid (inside the end caps) use the maximum B to calculate the number of loops N in the coil.

Part #5: Effect of an iron rod in the Solenoid.

1. Insert the Magnetic Field Sensor back into the coil as in Part #4.
2. From the other side of the coil, insert the iron rod until it touches the sensor end-to-end inside the coil. Move them out together to find the magnetic field magnitude inside the coil (while the rod is touching the sensor).
3. Record the magnetic field B with the iron rod. In one sentence, describe how much stronger the field is with the iron core vs. without the iron rod (max field from Part #4).